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Damage spreading in two-dimensional trivalent cellular structures with competing Glauber
and Kawasaki dynamics
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The damage spreading of the Ising model on several two-dimensional trivalent structures, including soap
froth, Voronoi, and hierarchical structures, are studied with competing Glauber and Kawasaki dynamics. The
damage spreading transition temperaffy@nd the Curie temperatuiig of these structures are compared. We
find thatT,4 of the hierarchical lattices decreases sharply as the probability of occurrence of Kawasaki dynamics
increases, whereas for soap froth and Vorofgifor the Voronoi and soap froth remain nearly unchanged
except when the dynamics is dominated by Kawasaki dynarjcand T¢ in our two-dimensional structures
are nearly the same and they behave similarly as we change the relative probability of occurrence of the
Glauber and Kawasaki dynamics. A heuristic argument is provided to explain the numerical results.
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I. INTRODUCTION dynamics can be used to describe the effect of external

: ; f energy, it is natural to extend our studies on DS by
The damage spreadind@S) technique has been exten- source of o .
sively applied in the study of dynamical properties of StatiS_conS|der|ng a combination of the Glauber and Kawasaki dy-

tical models[1-5]. The possibility of applying the DS tech- namics. In.deed, many recent works have addre;sed this issue
nique to simulate many economic and social phenomena h&$ competing Glauber and KawasaksK) dynamics for the
also been considerd8,6]. Generally, DS process in a given 1Sing system$12,13. In this paper, we will focus our atten-
pattern can be simulated using various models in statisticdion on the DS on various two-dimensional trivalent struc-
mechanics; here we address the DS for the Ising model. Odkres with competing GK dynamics. We find that the topol-
aim is to obtain some insights on the relation between to0gy plays an important role in determining the DS transition
pologies and dynamics, in the context of damage spreadinigmperatures, and there is characteristic difference between
of the Ising model. the hierarchical structures and the more natural and random
Trivalent structures have been investigated for many yearsellular structures such as soap froth.
due to their topological stability and general occurrence in  Many authors had discussed the relation between the DS
nature. Recently, we have generalized the works of DS ofransition temperatur&, and the Curie temperatufig. This
regular lattices, such as the squéfe?], triangle[3], and  relation is of great importance. Till now, many methods have
cubic [4] lattice, to two-dimensional trivalent cellular pat- peen suggested for the accurate determination of the DS tran-
terns[5], for which soap froth is a typical model system that sition temperature. A direct measure of the temperature de-
occurs in nature. Soap frot.h and Vorqﬂi@iB] tile the plane pendence function of the averaged daméddjcan be used,
with irregular polygons which have different areas. In orderbut not with high accuraci,5]. On the other hand, one may

to _h_a\_/e co_ntrollable topologies, we have also generalized_ thﬁse the peak location of the fluctuatiog(T) of damage to
artificial trivalent structures constructed by polygons with defineT, [14]. More reliable estimate for the transition tem-

different areas using the star-triangle transformation, result . . . .
ing in a series of hierarchical regular lattices. Our work fol- perature can be obtained by using the finite-size scaling pro-

lows the examples of the 4{®,10] and the 4-g11] lattice, cedurg[l4,1&'ﬂ. All these methods will become obsolete if we
which tile the plane with regular polygons of two kinds. The €@n find the relation betweefly and Tc. For the two-
set of hierarchical regular lattices we obtained by stardimensional Ising model, it is shown that the heat-bath dy-
triangle transformation on hexagonal lattice results in a sef@micsTy coincides withTc whereas for Glauber and Me-
ries of hierarchical lattice: the 3-12, the 3-6-24, and the 3-61ropolis dynamicsT is near but smaller thafic [16,17.
12-48 lattices. This kind of lattice has some interestingUnfortunately, satisfactory explanation for this relation be-
features in terms of the relation between topologies and théveen these two temperatures is still lacking. Thus, it is natu-
damage spreading using Glauber dynanifds However, in  ral, and of general interest, to consider if there is any relation
the investigation on damage spreading for the economic andetweenTy and Tc under competing Glauber and Kawasaki
social systems, we find that using the Glauber dynamics hadynamics. This forms the second objective of our present
some limitations, as in many realistic cases, injection of eninvestigation. In Sec. Il, we present the general theoretical
ergy by external force cannot be ignored. Since Kawasakiramework for our DS discussion. In Sec. lll, the DS results
are described. The effects of triangles on DS are studied in
Sec. IV, and the relation betwedy and T is discussed in

*Corresponding author. Email address: phszeto@ust.hk Sec. V.
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Il. THEORY
9 —u— hexagon
For a given two-dimensional trivalent cellular pattern, we sl . —o0—3-12 :
put an Ising spin at the center of each cell of the pattern and -] :;:g:gfg_‘m .
perform Monte Carlo simulation using the Hamiltonian of 6] +\ |--e-Voronoi | °
nearest-neighbor Ising model 5] L\ [-2—soap ;

H:_EJijSSja (1) S N e
() 24
whereJ;; >0 is the ferromagnetic exchange interaction coef- ;' x W

ficient between the nearest-neighbor sitesnd j, i.e., the
interaction between the nearest-neighbor aggmygons. -
In general,J;; is related with their areaf5]. In order to 1
simplify our calculation we ignore the area influence, so that P
=Jfor all of the nearest-neighbor sites. FIG. 1. The critical temperature of damage spreading with 1-

We consider two identical systems A and B. First, Wein which N= 25, 25, 15, and 15 for the hexagonal, the 3-12, the
evolve system A for a long time to reach equilibrium, theng o 24, and the 3-6-12-48 lattice, respectively.
system B, which is a replica of system A, is made.tAD,
the spin in the center cell of the lattice B is flippédam-

wl](s) {

0 forAE; <0,
1 for AE; >0,

aged and fixed for alit>0. The Hamming distanc@r dam-
age in phase space for the trivalent structures is calculated

by where w;j(s) is the probability of exchange between the
1 M nearest-neighbor spinsandj. If the change in energ)E;
D(t)=—2>, (1- 53%) & 5o), 2) after exchangir)g the neighbo_ring spirendj is pqsi_tive, the.
Miz new configuration is automatically accepted. If it is negative,

then the new configuration is not accepted. Kawasaki dy-

where{s'(t)} and{s’(t)} are the two spin configurations of namics simulates a system subjected to a continuous flux of
the system which are subject to the same thermal noise arehergy.
the same set of random numbers. Hbtes the number of Also starting from Eq(1), the Ising systems on the above
the total spins on the lattice studied. structures may evolve through the paramagnetic-

We use a combination of Glauber and Kawasaki dynamic$erromagnetic phase transitions under the competing dynam-
(GK) to define the evolution of our systems. We first define aics. By calculating the Binder’s cumulants with standard nu-
weighted transition probability per unit time from statéo  merical procedurgl8], we can obtain the Curie temperatures

s’ as of these Ising systems. The Binder's cumulant is written as
(8,8 = pag(ss) + (L -Pax(ss). 3 =1 -0 6
N 3<m2>2: ( )

The first term of the right side of E¢3) is based on Glauber . _
dynamics, corresponding to a situation where the system with m=|(1/N)Z;s|, where(- ) represents the thermal aver-

in thermal equilibrium with a heat reservoir. We go through29€-
the M sites with a probability

M IIl. DAMAGE SPREADING UNDER THE COMPETING
wG(S,S') = E 53’13153’232 Tt 5s’i—s1 e 5S’M5Mwi(s) . (4 DYNAMICS
=1 The results of the DS transition temperaturg of the
averaged damage spreadifthe results are averaged over
100 configurations of various trivalent structures as the
function of 1 are depicted in Fig. 1. We have chosen the
temperature whefD) rises to its half height of the value in
the long time limit as the critical temperatuigee the inset of
bFlg 2); in this way, T for the soap structure witp=1.0 is
approximately 3.7b Note that the DS transition temperature
is dependent on the size of the structure. For soap and
M Voronoi structures, the size of the system is expressed by the
wo(s8)=S dy.s, " Oy 5 55,1_%.. 5 5, @ii(S), (5) ratio F, as sketched in Fig. 3. Here we have assumed the
) : damage spreads from the center of the disk. For hierarchical
structures, the size is expressed Ny(see Fig. 4. (Figures
with for the hierarchical lattices can be found in Ré&f, whereN

with w;(s)=min{1,exd—AE;/kgT)}, wherew;(s) is the prob-
ability of flipping spini. The contact with the heat reservoir
at temperaturél follows the Metropolis prescription, with
AE; being the change in energy in flipping spin

The second term of the right side of E®) is based on
Kawasaki dynamics using two-spin exchange with the pro
ability
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FIG. 2. The averaged damage for the soap structures with vari-
ous size dimensions as a function Df(in unit of J/kg). F is the
ratio of stopping radius of the damage spreading simulation over th
maximum radius of the sample. The transition from the frozen to the chaotic state in DS is
. influenced by two factors: temperature and the competition
is the number of hexagons along the edge of the rhomb fog¢ the dynamics. In general Glauber dynamics favors a low
which star-triangle transformation is appligérigure 2 and energy state while Kawasaki dynamics favors a high energy
Fig. 4 are typical phase transition curves of the damag@iate. \When Glauber dynamics is dominéntlose to 3, the
spreading of the soap structure and the 3-12 lattice with varigansition is determined mainly by temperature. In this case
ous N or F. Generally, we defindy=limy_..Tq(N). HOW-  he transition temperature is higher. Butmslecreases, the
ever, as seen in Fig. 2 and Fig. 4, whisnis sufficiently  contribution of Kawasaki dynamics plays a more important
large, T4(N) does converge. We can use the temperature for gyje. resulting in a lower transition temperature.
largeN as the approximat€,. We also observe the transition From Fig. 1, we observe thafy(6)<T4(12) <T4(24)
from frozen to chaotic state through the average daniBye <T,(48) for p=1, whereT4(6),T4(12),T4(24), and T4(48)
in Fig. 2 and Fig. 4. The maximum &D) in the long time  stand for the critical temperatures corresponding to the pure
limit are all 0.5, meaning that eventually damage spreads thexagonal, the 3-12, the 3-6-24, and the 3-6-12-48 lattice.
all spins. This indicates that the more complicated the lattice, the

We see the important qualitative difference of DS on twolarger the T4 of the damage spreading becomes under
classes of trivalent structures, the s¢apd Voronoj and the  Glauber dynamics. To understand this trend, the key point
hierarchical lattice in Fig. 1. For the hierarchical lattidg, = may be the numbers of triangles in the lattices. Note that the
decreases sharply asplincreasesp decreasgswhile forthe  number of the triangles in the hexagonal, the 3-12, the 3-6-
Voronoi and soapTy remains nearly unchanged except for 24, and the 3-6-12-48 lattices are respectively 82, BN2,
very smallp. The behavior of soap and Voronoi are similar to and 18\2, hereN is the size of the latticéhe number of the
the pure hexagonal lattice since in these structures the mogiain polygons along one direction; see Ré&f). Although
probable polygons are hexagons. the number of the triangles are different among the 3-12, the

3-6-24, and the 3-6-12-48 lattices, the concentration of tri-
IV. EFFECTS OF TRIANGLES ON DAMAGE SPREADING angles in these lattices are the sa®@£3) [5]. Since we have

For a better understanding of the results of Fig. 1, oneeglected the area influence on the DS in the calculation, we
should pay more attention to the topology of the structuresconsider the triangle with the same level of importance as
other polygons. Now the triangle has only three ed(ks
F=RIR contiguity numberf=3). When it is damaged, less cells will

max be affected, so the DS is difficult compared with the 6-gon

(f=6), the 12-gon(f=12), the 24-gon(f=24), and the 48-

gon (f=48). Thus, for the lattices with larger number of tri-
‘ angles, bigger thermal noise is required to reach the equilib-

rium state(the so-called chaotic stateesulting in higheiT.

In pure Glauber dynamics, the damage is most readily healed

FIG. 4. The averaged damage for the 3-12 lattices with various
gize dimensions as a function ®f(in units of J/kg).

in the triangle sites. However, in Kawasaki dynamics, dam-
aged sites can be healed only in pairs while they diffuse and
also create further damage. The Kawasaki dynamics involves
two sites while the Glauber dynamics involves only single
site.

FIG. 3. Sketch of the size change of the soap and Voronoi struc-  First let us provide a qualitative picture of the competition
tures. F is the ratio of stopping radius of the damage spreadingbetween the Glauber and Kawasaki dynamics. From Fig. 1
simulation over the maximum radius of the sample. we can see that the roles of the triangles on these two dy-
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FIG. 5. (a) The topological hexagonal latticéb) The star- § 051 = 108
triangle transformatioriN;=10) made at the vertices randomly) 2 .44 loa
The 3-9 lattice(d) The 3-12 lattice. 5
) . . , S 0.3 G Jos
namics are very different. The role of t.he triangles varies O e
with changingp and the number of the triangles determines 0.2 pra g2 60000 lo2
the trend of theT, vs (1-p) curves. From the inset of Fig. 1, . . . . . .

we observe three zones for the 3-12, the 3-6-24, and the 00 01 02 °'3N”34 05 08 07

3-6-12-48 lattices. In zone A, the triangles hinder the damage et
ZﬁLe;nd(lggt,hceoggrirggtg ghp(areC::;i?lg.f écc))rr]é CL;; ;lgt][ﬁ;ettrgiézl[ﬁ)nnglf S FIG. 7. The clustering coeffi_cients of t_he network of Figb)s
gion. It is the Kawasaki dynamics that causes the abov&N=40 Vversus the number of inserted trianglesjuare and the
change from zone A to C. ratio of the inserted triangles to the total bubb(ksllow circle).

Next we like to provide a more quantitative understanding
of the effects of the number of the triangles on the trend of What is the key topological difference among the struc-
the T4 vs (1-p) curves. We begin by designing an artificial tures obtained by the insertion of triangles in the hexagonal
trivalent cellular network where the number of the trianglesnetwork shown in Fig. 5, in relation to the trend of the dam-
can be changed gradually. Since only the topology of theage temperaturéy shown in Fig. 6? We expect that cluster-
structures is emphasized, we consider the simplest staimg is an important topological property that greatly affects
triangle transformation in a hexagonal lattice. We do thethe evolution of damage spreading in the network. According
transformation on the vertices of the topological hexagonatlo Newman[19], two measures can be defined to describe
lattice with the dimension dil X N [Figs. §a) and 8b)]. The  the clustering of a networKcalled the clustering coeffi-
transformation is made at the vertices at random. We noticgients:
that when the numbeN; of triangles inserted at vertices .
increases, the trend of tHg; vs (1-p) curves does change. __3X (number of trianglels )
When the number of triangles approaches that of the 3-9 1™ (number of connected triples
lattice [Fig. 5(c)], T4 decreases linearly with - When the d
number of triangles is further increased, we see similar trend"”
of T4 as in the 3-12 latticdFig. 5(d)]. These are clearly 10
shown in Fig. 6. Note thd\|, is an average number over 100 C,==>c, (8)
configurations. For each configuration, the actual number of Ni=1

triangles inserted can be different fra, as the randomly wheren is the number of nodes arg is the ratio of the

generatgd points may coincide. For example, we may ger'%umber of triangles connected to verfexver the number of
only 9 triangles when we want to generate 10 triangtee

Fig. 5(b)] triples centered on ver;eix Often C? ?s referred to as the

‘ ’ average “network density{"19] and it is the average of the
ratio, while C; is the ratio of the average. In the following
6. :i: 230 '_';; ngo ] discussion on the relation between clustering effect and dam-

CmN=200  —%— N=400 age spreading, we focus @3 since the dynamics of damage

/ spreading is affected by the local clustering, and the proper
average should be performed on each given vartéx any
case, we have calculated the clustering coefficients of the
networks in the sequence of structures in Fig. 5 and the re-
sults are shown in Fig. 7.

We also calculated these two values for Voronoi and soap
froth structures studied here for comparison, which are re-
spectivelyC;=0.293,C,=0.425 for Voronoi andC;=0.296,
C,=0.427 for soap froth structure. Since our spins are put at
. . . . . the centers of the bubbles, the networks of spins are formed

00 02 04 06 08 10 actually by connecting the centers of the bubllé® dual
1-p lattice). When there is no inserted triangle, the hexagonal
lattice has similar clustering property to Voronoi and soap

FIG. 6. The effect of the numbers of the triangles on the trend ofstructures. As we increase the number of the inserted tri-
the Ty vs (1-p) curves(N=20). angles at the vertices of the hexagons, the average network
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FIG. 9. Binder’'s cumulants as the function of temperature for
FIG. 8. The Curie temperatures of various structures versughe 3-12 lattice.

1-p.

probability of the occurrence of the Kawasaki process in-
densityC, is also increased. The increase in network densityreases. This is in agreement with previous wdiX3]. By
C, implies the increased effect of pairwise damage spreadingomparing Fig. 1 with Fig. 8, we can say th&t and T in
via the neighbors of a given vertéxthrough Kawasaki dy-  our two-dimensional trivalent structures are nearly the same.
namics. As shown in Fig. 5, iteration of the star-triangle SinceT, varies with definitiongwe can define the following
transformation results in more triangles inserted, leading tQemperatures ad,: the temperature atD)=2(D)max (5],
the increase of network density. For example, after the first<D>:o [3], etc), it is difficult to compareTy with T quan-

order star-triangle transformation, one bubble turns into etitatively. Thus we only want to comment that qualitatively

_bubbles(one hexagon into one 12-gon and two trianglés: . these two temperatures are similar under competing GK dy-
increase of network density locally is equivalent to an in- - mics

crease of spin density, resulting in higher probability for
spins to exchange with neighboring ones. In summary, in-
creased number of inserted triangles leads to increased net- VI. CONCLUSION
work density, which enhances the Kawasaki process. This is
similar to the case of Potts model with the Swendson-Wangi; .
dynamics in which largeq has lower transition temperature St
[20]. From this simple topological investigation, we obtain a
heuristic understanding for the comparatively rapid drop i
DS transition temperature for the hierarchical lattice as th
weight of Kawasaki dynamics on DS is increasddp in-

creasepdue to increased network density, as compared to th
rather stable DS transition temperature in the soap an%‘lli

Voronoi cases. .
nant(p is smal) T4 and T of all the structures approaches

Finally, when Kawasaki is dominant, damage always dno t . Finall dT
spreads, resulting in no transition. This agrees with the obZ€r0 and no transition occurs. Finafly, we see Mpand Te

servations stated in Refi21,27], when Kawasaki dynamics in our two-dimensional structures exhibit similar behavior
is dominant in an Ising model. Thus we defifig=0 in the ~ When we vary the weighp of the competing GK dynamics.

case of pure Kawasaki dynamics. This agrees with our simuBY inserting triangles on vertices of the hexagonal lattice, we
lation result in Fig. 1, wherd of all of the structures ap- also obtain a heuristic understanding for the difference be-

tween the DS behaviors in the two classes of structures. The
proaches zero when f-approaches 1. rapid decrease ofy for the hierarchical structure as the
weight for Kawasaki dynamics increases is due to the in-
creasing network densities of these structures, compared to

We depict the Curie temperatures of the above structureie soap and Voronoi structures.

versus 1p in Fig. 8 in order to compardy and Tc. The
C_urie temperatures are ca}lculated using the crossover of the ACKNOWLEDGMENT
Binder's cumulants(see Fig. 9. For example, we geT;
=2.21+0.01 for the 3-12 lattice with this method. From Fig.  K.Y.S. acknowledges the support of Grant CERG 6071/
8 we see that the transition temperature decreases, as tA2P.

In summary, we have studied the damage spreading of the
ng model on the two-dimensional trivalent structures with
competing Glauber and Kawasaki dynamics and compared
the DS transition temperatuig; and the Curie temperature
dc We find that the two classes of trivalent structures exhibit
different properties. The DS temperatdrgof the hierarchi-

gal lattices decreases sharply ap increasegp decreases
hereas for soap and Vorondiy remains nearly unchanged

| 1-p is close to one. When Kawasaki dynamics is domi-

V. RELATION BETWEEN T4 AND T¢
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