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The damage spreading of the Ising model on several two-dimensional trivalent structures, including soap
froth, Voronoi, and hierarchical structures, are studied with competing Glauber and Kawasaki dynamics. The
damage spreading transition temperatureTd and the Curie temperatureTC of these structures are compared. We
find thatTd of the hierarchical lattices decreases sharply as the probability of occurrence of Kawasaki dynamics
increases, whereas for soap froth and Voronoi,Td for the Voronoi and soap froth remain nearly unchanged
except when the dynamics is dominated by Kawasaki dynamics.Td andTC in our two-dimensional structures
are nearly the same and they behave similarly as we change the relative probability of occurrence of the
Glauber and Kawasaki dynamics. A heuristic argument is provided to explain the numerical results.
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I. INTRODUCTION

The damage spreadingsDSd technique has been exten-
sively applied in the study of dynamical properties of statis-
tical modelsf1–5g. The possibility of applying the DS tech-
nique to simulate many economic and social phenomena has
also been consideredf5,6g. Generally, DS process in a given
pattern can be simulated using various models in statistical
mechanics; here we address the DS for the Ising model. Our
aim is to obtain some insights on the relation between to-
pologies and dynamics, in the context of damage spreading
of the Ising model.

Trivalent structures have been investigated for many years
due to their topological stability and general occurrence in
nature. Recently, we have generalized the works of DS on
regular lattices, such as the squaref1,2g, triangle f3g, and
cubic f4g lattice, to two-dimensional trivalent cellular pat-
ternsf5g, for which soap froth is a typical model system that
occurs in nature. Soap froth and Voronoif7,8g tile the plane
with irregular polygons which have different areas. In order
to have controllable topologies, we have also generalized the
artificial trivalent structures constructed by polygons with
different areas using the star-triangle transformation, result-
ing in a series of hierarchical regular lattices. Our work fol-
lows the examples of the 4-8f9,10g and the 4-6f11g lattice,
which tile the plane with regular polygons of two kinds. The
set of hierarchical regular lattices we obtained by star-
triangle transformation on hexagonal lattice results in a se-
ries of hierarchical lattice: the 3-12, the 3-6-24, and the 3-6-
12-48 lattices. This kind of lattice has some interesting
features in terms of the relation between topologies and the
damage spreading using Glauber dynamicsf5g. However, in
the investigation on damage spreading for the economic and
social systems, we find that using the Glauber dynamics has
some limitations, as in many realistic cases, injection of en-
ergy by external force cannot be ignored. Since Kawasaki

dynamics can be used to describe the effect of external
source of energy, it is natural to extend our studies on DS by
considering a combination of the Glauber and Kawasaki dy-
namics. Indeed, many recent works have addressed this issue
of competing Glauber and KawasakisGKd dynamics for the
Ising systemsf12,13g. In this paper, we will focus our atten-
tion on the DS on various two-dimensional trivalent struc-
tures with competing GK dynamics. We find that the topol-
ogy plays an important role in determining the DS transition
temperatures, and there is characteristic difference between
the hierarchical structures and the more natural and random
cellular structures such as soap froth.

Many authors had discussed the relation between the DS
transition temperatureTd and the Curie temperatureTC. This
relation is of great importance. Till now, many methods have
been suggested for the accurate determination of the DS tran-
sition temperature. A direct measure of the temperature de-
pendence function of the averaged damagekDl can be used,
but not with high accuracyf3,5g. On the other hand, one may
use the peak location of the fluctuationsDsTd of damage to
defineTd f14g. More reliable estimate for the transition tem-
perature can be obtained by using the finite-size scaling pro-
ceduref14,15g. All these methods will become obsolete if we
can find the relation betweenTd and TC. For the two-
dimensional Ising model, it is shown that the heat-bath dy-
namicsTd coincides withTC whereas for Glauber and Me-
tropolis dynamicsTd is near but smaller thanTC f16,17g.
Unfortunately, satisfactory explanation for this relation be-
tween these two temperatures is still lacking. Thus, it is natu-
ral, and of general interest, to consider if there is any relation
betweenTd andTC under competing Glauber and Kawasaki
dynamics. This forms the second objective of our present
investigation. In Sec. II, we present the general theoretical
framework for our DS discussion. In Sec. III, the DS results
are described. The effects of triangles on DS are studied in
Sec. IV, and the relation betweenTd andTC is discussed in
Sec. V.*Corresponding author. Email address: phszeto@ust.hk
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II. THEORY

For a given two-dimensional trivalent cellular pattern, we
put an Ising spin at the center of each cell of the pattern and
perform Monte Carlo simulation using the Hamiltonian of
nearest-neighbor Ising model

H = − o
ki,jl

Jijsisj , s1d

whereJij .0 is the ferromagnetic exchange interaction coef-
ficient between the nearest-neighbor sitesi and j , i.e., the
interaction between the nearest-neighbor agentsspolygonsd.
In general,Jij is related with their areasf5g. In order to
simplify our calculation we ignore the area influence, so that
Jij =J for all of the nearest-neighbor sites.

We consider two identical systems A and B. First, we
evolve system A for a long time to reach equilibrium, then
system B, which is a replica of system A, is made. Att=0,
the spin in the center cell of the lattice B is flippedsdam-
agedd and fixed for allt.0. The Hamming distancesor dam-
aged in phase space for the trivalent structures is calculated
by

Dstd =
1

M
o
i=1

M

s1 − dsi
Astd,si

Bstdd, s2d

where hsi
Astdj and hsi

Bstdj are the two spin configurations of
the system which are subject to the same thermal noise and
the same set of random numbers. HereM is the number of
the total spins on the lattice studied.

We use a combination of Glauber and Kawasaki dynamics
sGKd to define the evolution of our systems. We first define a
weighted transition probability per unit time from states to
s8 as

vss,s8d = pvGss,s8d + s1 − pdvKss,s8d. s3d

The first term of the right side of Eq.s3d is based on Glauber
dynamics, corresponding to a situation where the system is
in thermal equilibrium with a heat reservoir. We go through
the M sites with a probability

vGss,s8d = o
i=1

M

ds81s1
ds82s2

¯ ds8i-si
¯ ds8MsM

vissd, s4d

with vissd=minh1,exps−DEi /kBTdj, wherevissd is the prob-
ability of flipping spin i. The contact with the heat reservoir
at temperatureT follows the Metropolis prescription, with
DEi being the change in energy in flipping spini.

The second term of the right side of Eq.s3d is based on
Kawasaki dynamics using two-spin exchange with the prob-
ability

vKss,s8d = o
ki,jl

M

ds81s1
¯ ds8isj

¯ ds8 jsi
¯ ds8MsM

vi jssd, s5d

with

vi jssd = H0 for DEij ø 0,

1 for DEij . 0,
J

where vi jssd is the probability of exchange between the
nearest-neighbor spinsi and j . If the change in energyDEij
after exchanging the neighboring spinsi and j is positive, the
new configuration is automatically accepted. If it is negative,
then the new configuration is not accepted. Kawasaki dy-
namics simulates a system subjected to a continuous flux of
energy.

Also starting from Eq.s1d, the Ising systems on the above
structures may evolve through the paramagnetic-
ferromagnetic phase transitions under the competing dynam-
ics. By calculating the Binder’s cumulants with standard nu-
merical proceduref18g, we can obtain the Curie temperatures
of these Ising systems. The Binder’s cumulant is written as

UN = 1 −
km4l

3km2l2 , s6d

with m= us1/Ndoisiu, wherek¯l represents the thermal aver-
age.

III. DAMAGE SPREADING UNDER THE COMPETING
DYNAMICS

The results of the DS transition temperatureTd of the
averaged damage spreadingsthe results are averaged over
100 configurationsd of various trivalent structures as the
function of 1-p are depicted in Fig. 1. We have chosen the
temperature whenkDl rises to its half height of the value in
the long time limit as the critical temperaturessee the inset of
Fig. 2d; in this way,Td for the soap structure withp=1.0 is
approximately 3.75d. Note that the DS transition temperature
is dependent on the size of the structure. For soap and
Voronoi structures, the size of the system is expressed by the
ratio F, as sketched in Fig. 3. Here we have assumed the
damage spreads from the center of the disk. For hierarchical
structures, the size is expressed byN ssee Fig. 4d. sFigures
for the hierarchical lattices can be found in Ref.f5g, whereN

FIG. 1. The critical temperature of damage spreading with 1-p,
in which N=25, 25, 15, and 15 for the hexagonal, the 3-12, the
3-6-24, and the 3-6-12-48 lattice, respectively.

Z. Z. GUO AND K. Y. SZETO PHYSICAL REVIEW E71, 066115s2005d

066115-2



is the number of hexagons along the edge of the rhomb for
which star-triangle transformation is applied.d Figure 2 and
Fig. 4 are typical phase transition curves of the damage
spreading of the soap structure and the 3-12 lattice with vari-
ous N or F. Generally, we defineTd=limN→`TdsNd. How-
ever, as seen in Fig. 2 and Fig. 4, whenN is sufficiently
large,TdsNd does converge. We can use the temperature for a
largeN as the approximateTd. We also observe the transition
from frozen to chaotic state through the average damagekDl
in Fig. 2 and Fig. 4. The maximum ofkDl in the long time
limit are all 0.5, meaning that eventually damage spreads to
all spins.

We see the important qualitative difference of DS on two
classes of trivalent structures, the soapsand Voronoid and the
hierarchical lattice in Fig. 1. For the hierarchical lattice,Td
decreases sharply as 1-p increasessp decreasesd while for the
Voronoi and soap,Td remains nearly unchanged except for
very smallp. The behavior of soap and Voronoi are similar to
the pure hexagonal lattice since in these structures the most
probable polygons are hexagons.

IV. EFFECTS OF TRIANGLES ON DAMAGE SPREADING

For a better understanding of the results of Fig. 1, one
should pay more attention to the topology of the structures.

The transition from the frozen to the chaotic state in DS is
influenced by two factors: temperature and the competition
of the dynamics. In general Glauber dynamics favors a low
energy state while Kawasaki dynamics favors a high energy
state. When Glauber dynamics is dominantsp close to 1d, the
transition is determined mainly by temperature. In this case
the transition temperature is higher. But asp decreases, the
contribution of Kawasaki dynamics plays a more important
role, resulting in a lower transition temperature.

From Fig. 1, we observe thatTds6d,Tds12d,Tds24d
,Tds48d for p=1, whereTds6d ,Tds12d ,Tds24d, and Tds48d
stand for the critical temperatures corresponding to the pure
hexagonal, the 3-12, the 3-6-24, and the 3-6-12-48 lattice.
This indicates that the more complicated the lattice, the
larger the Td of the damage spreading becomes under
Glauber dynamics. To understand this trend, the key point
may be the numbers of triangles in the lattices. Note that the
number of the triangles in the hexagonal, the 3-12, the 3-6-
24, and the 3-6-12-48 lattices are respectively 0, 2N2,6N2,
and 18N2, hereN is the size of the latticesthe number of the
main polygons along one direction; see Ref.f5gd. Although
the number of the triangles are different among the 3-12, the
3-6-24, and the 3-6-12-48 lattices, the concentration of tri-
angles in these lattices are the sames2/3d f5g. Since we have
neglected the area influence on the DS in the calculation, we
consider the triangle with the same level of importance as
other polygons. Now the triangle has only three edgessthe
contiguity numberf =3d. When it is damaged, less cells will
be affected, so the DS is difficult compared with the 6-gon
sf =6d, the 12-gonsf =12d, the 24-gonsf =24d, and the 48-
gon sf =48d. Thus, for the lattices with larger number of tri-
angles, bigger thermal noise is required to reach the equilib-
rium statesthe so-called chaotic stated, resulting in higherTd.
In pure Glauber dynamics, the damage is most readily healed
in the triangle sites. However, in Kawasaki dynamics, dam-
aged sites can be healed only in pairs while they diffuse and
also create further damage. The Kawasaki dynamics involves
two sites while the Glauber dynamics involves only single
site.

First let us provide a qualitative picture of the competition
between the Glauber and Kawasaki dynamics. From Fig. 1
we can see that the roles of the triangles on these two dy-

FIG. 4. The averaged damage for the 3-12 lattices with various
size dimensions as a function ofT sin units of J/kBd.

FIG. 2. The averaged damage for the soap structures with vari-
ous size dimensions as a function ofT sin unit of J/kBd. F is the
ratio of stopping radius of the damage spreading simulation over the
maximum radius of the sample.

FIG. 3. Sketch of the size change of the soap and Voronoi struc-
tures. F is the ratio of stopping radius of the damage spreading
simulation over the maximum radius of the sample.

DAMAGE SPREADING IN TWO-DIMENSIONAL… PHYSICAL REVIEW E 71, 066115s2005d

066115-3



namics are very different. The role of the triangles varies
with changingp and the number of the triangles determines
the trend of theTd vs s1-pd curves. From the inset of Fig. 1,
we observe three zones for the 3-12, the 3-6-24, and the
3-6-12-48 lattices. In zone A, the triangles hinder the damage
spreading, contrary to the case of zone C, where the triangles
enhance the damage spreading. Zone B is the transition re-
gion. It is the Kawasaki dynamics that causes the above
change from zone A to C.

Next we like to provide a more quantitative understanding
of the effects of the number of the triangles on the trend of
the Td vs s1-pd curves. We begin by designing an artificial
trivalent cellular network where the number of the triangles
can be changed gradually. Since only the topology of the
structures is emphasized, we consider the simplest star-
triangle transformation in a hexagonal lattice. We do the
transformation on the vertices of the topological hexagonal
lattice with the dimension ofN3N fFigs. 5sad and 5sbdg. The
transformation is made at the vertices at random. We notice
that when the numberNi of triangles inserted at vertices
increases, the trend of theTd vs s1-pd curves does change.
When the number of triangles approaches that of the 3-9
lattice fFig. 5scdg, Td decreases linearly with 1-p. When the
number of triangles is further increased, we see similar trend
of Td as in the 3-12 latticefFig. 5sddg. These are clearly
shown in Fig. 6. Note thatNi is an average number over 100
configurations. For each configuration, the actual number of
triangles inserted can be different fromNi, as the randomly
generated points may coincide. For example, we may get
only 9 triangles when we want to generate 10 trianglesfsee
Fig. 5sbdg.

What is the key topological difference among the struc-
tures obtained by the insertion of triangles in the hexagonal
network shown in Fig. 5, in relation to the trend of the dam-
age temperatureTd shown in Fig. 6? We expect that cluster-
ing is an important topological property that greatly affects
the evolution of damage spreading in the network. According
to Newmanf19g, two measures can be defined to describe
the clustering of a networkscalled the clustering coeffi-
cientsd:

C1 =
3 3 snumber of trianglesd

snumber of connected triplesd
s7d

and

C2 =
1

n
o
i=1

n

ci , s8d

where n is the number of nodes andci is the ratio of the
number of triangles connected to vertexi over the number of
triples centered on vertexi. Often C2 is referred to as the
average “network density”f19g and it is the average of the
ratio, while C1 is the ratio of the average. In the following
discussion on the relation between clustering effect and dam-
age spreading, we focus onC2 since the dynamics of damage
spreading is affected by the local clustering, and the proper
average should be performed on each given vertexi. In any
case, we have calculated the clustering coefficients of the
networks in the sequence of structures in Fig. 5 and the re-
sults are shown in Fig. 7.

We also calculated these two values for Voronoi and soap
froth structures studied here for comparison, which are re-
spectivelyC1=0.293,C2=0.425 for Voronoi andC1=0.296,
C2=0.427 for soap froth structure. Since our spins are put at
the centers of the bubbles, the networks of spins are formed
actually by connecting the centers of the bubblessthe dual
latticed. When there is no inserted triangle, the hexagonal
lattice has similar clustering property to Voronoi and soap
structures. As we increase the number of the inserted tri-
angles at the vertices of the hexagons, the average network

FIG. 5. sad The topological hexagonal lattice.sbd The star-
triangle transformationsNi =10d made at the vertices randomly.scd
The 3-9 lattice.sdd The 3-12 lattice.

FIG. 6. The effect of the numbers of the triangles on the trend of
the Td vs s1-pd curvessN=20d.

FIG. 7. The clustering coefficients of the network of Fig. 5sbd
sN=40d versus the number of inserted trianglesssquared and the
ratio of the inserted triangles to the total bubblesshollow circled.
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densityC2 is also increased. The increase in network density
C2 implies the increased effect of pairwise damage spreading
via the neighbors of a given vertexi through Kawasaki dy-
namics. As shown in Fig. 5, iteration of the star-triangle
transformation results in more triangles inserted, leading to
the increase of network density. For example, after the first-
order star-triangle transformation, one bubble turns into 3
bubblessone hexagon into one 12-gon and two trianglesd. An
increase of network density locally is equivalent to an in-
crease of spin density, resulting in higher probability for
spins to exchange with neighboring ones. In summary, in-
creased number of inserted triangles leads to increased net-
work density, which enhances the Kawasaki process. This is
similar to the case of Potts model with the Swendson-Wang
dynamics in which largerq has lower transition temperature
f20g. From this simple topological investigation, we obtain a
heuristic understanding for the comparatively rapid drop in
DS transition temperature for the hierarchical lattice as the
weight of Kawasaki dynamics on DS is increaseds1-p in-
creasesd due to increased network density, as compared to the
rather stable DS transition temperature in the soap and
Voronoi cases.

Finally, when Kawasaki is dominant, damage always
spreads, resulting in no transition. This agrees with the ob-
servations stated in Refs.f21,22g, when Kawasaki dynamics
is dominant in an Ising model. Thus we defineTd=0 in the
case of pure Kawasaki dynamics. This agrees with our simu-
lation result in Fig. 1, whereTd of all of the structures ap-
proaches zero when 1-p approaches 1.

V. RELATION BETWEEN Td AND TC

We depict the Curie temperatures of the above structures
versus 1-p in Fig. 8 in order to compareTd and TC. The
Curie temperatures are calculated using the crossover of the
Binder’s cumulantsssee Fig. 9d. For example, we getTC
=2.21±0.01 for the 3-12 lattice with this method. From Fig.
8 we see that the transition temperature decreases, as the

probability of the occurrence of the Kawasaki process in-
creases. This is in agreement with previous worksf23g. By
comparing Fig. 1 with Fig. 8, we can say thatTd andTC in
our two-dimensional trivalent structures are nearly the same.
SinceTd varies with definitionsswe can define the following
temperatures asTd: the temperature atkDl= 1

2kDlmax f5g,
kDl=0 f3g, etc.d, it is difficult to compareTd with TC quan-
titatively. Thus we only want to comment that qualitatively
these two temperatures are similar under competing GK dy-
namics.

VI. CONCLUSION

In summary, we have studied the damage spreading of the
Ising model on the two-dimensional trivalent structures with
competing Glauber and Kawasaki dynamics and compared
the DS transition temperatureTd and the Curie temperature
TC. We find that the two classes of trivalent structures exhibit
different properties. The DS temperatureTd of the hierarchi-
cal lattices decreases sharply as 1-p increasessp decreasesd,
whereas for soap and Voronoi,Td remains nearly unchanged
till 1- p is close to one. When Kawasaki dynamics is domi-
nant sp is smalld Td andTC of all the structures approaches
zero and no transition occurs. Finally, we see thatTd andTC
in our two-dimensional structures exhibit similar behavior
when we vary the weightp of the competing GK dynamics.
By inserting triangles on vertices of the hexagonal lattice, we
also obtain a heuristic understanding for the difference be-
tween the DS behaviors in the two classes of structures. The
rapid decrease ofTd for the hierarchical structure as the
weight for Kawasaki dynamics increases is due to the in-
creasing network densities of these structures, compared to
the soap and Voronoi structures.
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FIG. 8. The Curie temperatures of various structures versus
1-p.

FIG. 9. Binder’s cumulants as the function of temperature for
the 3-12 lattice.
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